(print-as-expression #f) (define (variable? x) (symbol? x)) (define (same-variable? v1 v2) (and (variable? v1) (variable? v2) (eq? v1 v2))) (define (=number? exp num) (and (number? exp) (= exp num))) (define (make-sum a1 a2) (cond ((=number? a1 0) a2) ((=number? a2 0) a1) ((and (number? a1) (number? a2)) (+ a1 a2)) (else (list '+ a1 a2)))) (define (make-product m1 m2) (cond ((or (=number? m1 0) (=number? m2 0)) 0) ((=number? m1 1) m2) ((=number? m2 1) m1) ((and (number? m1) (number? m2)) (* m1 m2)) (else (list '* m1 m2)))) (define (sum? x) (and (pair? x) (eq? (car x) '+))) (define (addend s) (cadr s)) (define (augend s) (caddr s)) (define (product? x) (and (pair? x) (eq? (car x) '*))) (define (multiplier p) (cadr p)) (define (multiplicand p) (caddr p)) (define (deriv exp var) (cond ((number? exp) 0) ((variable? exp) (if (same-variable? exp var) 1 0)) ((sum? exp) (make-sum (deriv (addend exp) var) (deriv (augend exp) var))) ((product? exp) (make-sum (make-product (multiplier exp) (deriv (multiplicand exp) var)) (make-product (deriv (multiplier exp) var) (multiplicand exp)))) ((exponentiation? exp) (make-product (exponent exp) (make-product (make-exponentiation (base exp) (make-sum (exponent exp) (- 1))) (deriv (base exp) var)))) (else (error "unknown expression type -- DERIV" exp)))) (define (make-exponentiation base exp) (cond ((=number? exp 0) 1) ((=number? exp 1) base) (else (list '** base exp)))) (define (exponentiation? x) (and (pair? x) (eq? (car x) '**))) (define (base e) (cadr e)) (define (exponent e) (caddr e))
The tricky part to use all the high level function such as make-sum, as the exp could be a expression as well.
make-sum
exp
(define (augend s) (if (null? cdddr s) (caddr s) (cons '+ (cddr s))))
Skipped