More polymorphism and type classes
Posted on 2015-08-18 01:01:33 +0900 in Functional Programming
Lecture Contents
f :: a -> a -> a
f x y = x && y
The reason this doesn’t work is that the caller of a polymorphic function gets to choose the type. Here we, the implementors, have tried to choose a specific type
a -> a -> a
could be understood as a promise that a function with this type will work no matter what type the caller chooses
Type classes
Intuitively, type classes correspond to sets of types which have certain operations defined for them, and type class polymorphic functions work only for types which are instances of the type class(es) in question
Home Work
Exercise 1
eval :: ExprT -> Integer
eval (Lit i) = i
eval (Add e1 e2) = eval e1 + eval e2
eval (Mul e1 e2) = eval e1 * eval e2
Exercise 2
evalStr :: String -> Maybe Integer
evalStr = fmap eval . parseExp Lit Add Mul
Exercise 3
Defination for Expr
module Expr where
class Expr a where
lit :: Integer -> a
add :: a -> a -> a
mul :: a -> a -> a
instance Expr ExprT where
lit = Lit
add = Add
mul = Mul
reify :: ExprT -> ExprT
reify = id
Exercise 4
instance Expr Integer where
lit = id
add = (+)
mul = (*)
instance Expr Bool where
lit i
| i <= 0 = False
| i > 0 = True
add = (||)
mul = (&&)
newtype MinMax = MinMax Integer
deriving (Eq, Show)
instance Expr MinMax where
lit = MinMax
add (MinMax x) (MinMax y) = MinMax (max x y)
mul (MinMax x) (MinMax y) = MinMax (min x y)
newtype Mod7 = Mod7 Integer
deriving (Eq, Show)
instance Expr Mod7 where
lit x = Mod7 (x `mod` 7)
add (Mod7 x) (Mod7 y) = Mod7 ((x+y) `mod` 7)
mul (Mod7 x) (Mod7 y) = Mod7 ((x*y) `mod` 7)
Exercise 5
instance Expr Program where
lit x = [PushI x]
add x y = x ++ y ++ [Add]
mul x y = x ++ y ++ [Mul]
Exercise 6
There are two tricky parts from my view:
-
Same expression can belong to multiple types, both
add (lit 3) (var "x") :: (M.Map String Integer -> Maybe Integer)
andadd (lit 3) (var "x") :: VarExprT
are valid -
add e1 e2 m
has the type of(M.Map String Integer -> Maybe Integer) -> (M.Map String Integer -> Maybe Integer) -> (M.Map String Integer -> Maybe Integer)
data VarExprT = Lit Integer
| Add VarExprT VarExprT
| Mul VarExprT VarExprT
| Var String
deriving (Eq, Show)
instance Expr VarExprT where
lit = Lit
add = Add
mul = Mul
class HasVars a where
var :: String -> a
instance HasVars VarExprT where
var = Var
instance HasVars (M.Map String Integer -> Maybe Integer) where
var = M.lookup
instance Expr (M.Map String Integer -> Maybe Integer) where
lit = const . Just
add e1 e2 m = (+) <$> e1 m <*> e2 m
mul e1 e2 m = (*) <$> e1 m <*> e2 m
withVars :: [(String, Integer)]
-> (M.Map String Integer -> Maybe Integer)
-> Maybe Integer
withVars vs exp = exp $ M.fromList vs